Algorithms#
SGD#
class SGD(params, lr: float, momentum: float = 0, weight_decay: float = 0):
Implements stochastic gradient descent (optionally with momentum).
Methods#
step#
def step(self, show_graph: bool = False) -> None:
Performs a single optimization step.
Parameters
show_graph– If True, prints the compiled graph during optimizer step
Adam#
class Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0):
Implements Adam algorithm.