Base Class#
Module#
class Module():
Base class for all neural network modules, inspired by PyTorch’s nn.Module.
Methods#
buffers#
def buffers(self) -> 'Iterator[Tensor]':
compile#
def compile(self, **jit_kwargs):
eval#
def eval(self):
extra_repr#
def extra_repr(self) -> 'str':
forward#
def forward(self, *args, **kwargs):
load_state_dict#
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]'):
modules#
def modules(self) -> 'Iterator[Module]':
named_buffers#
def named_buffers(self, prefix: 'str' = '') -> 'Iterator[tuple[str, Tensor]]':
named_parameters#
def named_parameters(self, prefix: 'str' = '') -> 'Iterator[tuple[str, Tensor]]':
parameters#
def parameters(self) -> 'Iterator[Tensor]':
register_buffer#
def register_buffer(self, name: 'str', tensor: 'Tensor | None'):
Adds a persistent buffer to the module.
state_dict#
def state_dict(self) -> 'OrderedDict[str, Tensor]':
train#
def train(self):
zero_grad#
def zero_grad(self) -> 'None':