Array Creation#
Functions for creating new arrays with various initialization patterns.
Functions
Quick Reference#
arange#
nabla.arange(start: 'int | float', stop: 'int | float | None' = None, step: 'int | float | None' = None, dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), traced: 'bool' = False, batch_dims: 'Shape' = ()) -> 'Array'
Create an array with evenly spaced values.
array#
nabla.array(data: 'list | np.ndarray | float | int', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Create a new array from data.
full_like#
nabla.full_like(template: 'Array', fill_value: 'float') -> 'Array'
Nabla operation: full_like
glorot_uniform#
nabla.glorot_uniform(shape: 'Shape', dtype: 'DType' = float32, gain: 'float' = 1.0, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: glorot_uniform
he_normal#
nabla.he_normal(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: he_normal
he_uniform#
nabla.he_uniform(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: he_uniform
lecun_normal#
nabla.lecun_normal(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: lecun_normal
lecun_uniform#
nabla.lecun_uniform(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: lecun_uniform
ndarange#
nabla.ndarange(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: ndarange
ndarange_like#
nabla.ndarange_like(template: 'Array') -> 'Array'
Nabla operation: ndarange_like
ones#
nabla.ones(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Create an array filled with ones.
ones_like#
nabla.ones_like(template: 'Array') -> 'Array'
Create an array of ones with the same shape as input.
rand#
nabla.rand(shape: 'Shape', dtype: 'DType' = float32, lower: 'float' = 0.0, upper: 'float' = 1.0, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: rand
rand_like#
nabla.rand_like(template: 'Array', lower: 'float' = 0.0, upper: 'float' = 1.0, seed: 'int' = 0) -> 'Array'
Nabla operation: rand_like
randn#
nabla.randn(shape: 'Shape', dtype: 'DType' = float32, mean: 'float' = 0.0, std: 'float' = 1.0, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Create an array with random values from normal distribution.
randn_like#
nabla.randn_like(template: 'Array', mean: 'float' = 0.0, std: 'float' = 1.0, seed: 'int' = 0) -> 'Array'
Nabla operation: randn_like
triu#
nabla.triu(x, k=0)
Nabla operation: triu
xavier_normal#
nabla.xavier_normal(shape: 'Shape', dtype: 'DType' = float32, gain: 'float' = 1.0, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: xavier_normal
xavier_uniform#
nabla.xavier_uniform(shape: 'Shape', dtype: 'DType' = float32, gain: 'float' = 1.0, device: 'Device' = Device(type=cpu,id=0), seed: 'int' = 0, batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Nabla operation: xavier_uniform
zeros#
nabla.zeros(shape: 'Shape', dtype: 'DType' = float32, device: 'Device' = Device(type=cpu,id=0), batch_dims: 'Shape' = (), traced: 'bool' = False) -> 'Array'
Create an array filled with zeros.
zeros_like#
nabla.zeros_like(template: 'Array') -> 'Array'
Create a zero array with the same shape as input.